
Tissue P Systems with Antiport Rules and Small
Numbers of Symbols and Cells

Artiom Alhazov1, Rudolf Freund2, Marion Oswald2

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md
and
Research Group on Mathematical Linguistics
Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
E-mail: artiome.alhazov@estudiants.urv.es

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9–11, A–1040 Vienna, Austria
E-mail: {rudi,marion}@emcc.at

Summary. We consider tissue P systems with antiport rules and investigate their com-
putational power when using only a (very) small number of symbols and cells. Even when
using only one symbol, any recursively enumerable set of natural numbers can be gener-
ated with at most seven cells. On the other hand, with only one cell we can only generate
regular sets when using one channel with the environment, whereas one cell with two
channels between the cell and the environment obtains computational completeness with
at most five symbols. Between these extreme cases of one symbol and one cell, respec-
tively, there is a trade-off between the number of cells and the number of symbols, e.g.,
for the case of tissue P systems with two channels between a cell and the environment we
show that computational completeness can be obtained with two cells and three symbols
as well as with three cells and two symbols, respectively.

1 Introduction

Membrane systems with a hierarchical (tree-like) structure (P systems) were in-
troduced in the original paper of Gheorghe Păun (see [12]) with the rules being
applied in a maximally parallel manner; tissue P systems with cells arranged in
an arbitrary graph structure (see [9]) allow only one rule to be applied in each
channel between two cells or a cell and the environment, but all channels work
together in a maximally parallel manner. We here consider tissue P systems using
symport/antiport rules (these communication rules first were investigated in [11])
for the communication between two cells or a cell and the environment.



8 A. Alhazov, R. Freund, M. Oswald

It is well known that equipped with the maximally parallel derivation mode
P systems with only one membrane (one cell) already reach computational com-
pleteness, even with antiport rules of weight two (e.g., see [4], [6]); the same result
also holds true for P systems with one cell and two channels (working in opposite
directions) between the cell and the environment, whereas with only one channel
between the environment and the single cell only regular sets of natural numbers
can be generated as will be proved in Section 5.

Considering the generation of recursively enumerable sets of natural numbers
we may also ask the question how many symbols we need for obtaining compu-
tational completeness, especially for small numbers of membranes (in P systems)
and cells (in tissue P systems), respectively. In [14], the quite surprising result
was proved that three symbols in and four membranes are enough in the case of
P systems with symport/antiport rules. The specific type of maximally parallel
application of at most one rule in each channel between two cells or a cell and the
environment, respectively, in tissue P systems allowed for an even more surprising
result proved in [5]: The minimal number of one symbol is already sufficient to
obtain computational completeness, e.g., it was shown that any recursively enu-
merable set of natural numbers can be generated by a tissue P system with at
most seven cells using symport/antiport rules of only one symbol. On the other
hand, for “classical” P systems using symport/antiport rules it was shown in [1]
that computational completeness can already be obtained in one membrane by
using only five symbols.

We here further investigate the power of tissue P systems with sym-
port/antiport rules as well as small numbers of symbols and cells. After some
preliminary definitions, we recall the definition of tissue P systems as they are
considered in this paper. We then first consider tissue P systems with only one
symbol and recall the completeness result from [5] in Section 3. Afterwards, in Sec-
tion 4 we elaborate computational completeness results for tissue P systems with
two and three symbols, respectively. On the other hand, for tissue P systems with
only one cell, computational completeness cannot be achieved when using only one
channel with the environment, instead with at least two symbols we obtain only
regular sets as is shown in Section 5, whereas one cell with two channels between
the cell and the environment gains computational completeness with at most five
symbols (a similar result for P systems is established in [1]). In Section 6 we finally
give an overview about the results obtained in this paper.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we refer
to [2] and [16]. We just list a few notions and notations: N denotes the set of
positive integers. V ∗ is the free monoid generated by the alphabet V under the
operation of concatenation and the empty string, denoted by λ, as unit element; by
NRE, NREG, and NFIN we denote the family of recursively enumerable sets,



Tissue P Systems with Antiport Rules 9

regular sets, and finite sets of natural numbers, respectively; the family of sets of
natural numbers representing the length sets of one-letter languages generated by
matrix grammars is denoted by NMAT .

2.1 Register machines

The proofs of the main results established in this paper are based on the simulation
of register machines; we refer to [10] for original definitions, and to [4] for definitions
like those we use in this paper:

A (non-deterministic) register machine is a construct M = (n,R, l0, lh) , where
n is the number of registers, R is a finite set of instructions injectively labelled
with elements from a given set lab (M), l0 is the initial/start label, and lh is the
final label.

The instructions are of the following forms:

– l1 : (A (r) , l2, l3)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) l2 and l3. (We say that we have an ADD instruction.)

– l1 : (S (r) , l2, l3)
If register r is not empty, then subtract 1 from its contents and go to in-
struction l2, otherwise proceed to instruction l3. (We say that we have a SUB
instruction.)

– lh : halt
Stop the machine. The final label lh is only assigned to this instruction.

A register machine M is said to generate a vector (s1, . . . , sk) of natural num-
bers if, starting with the instruction with label l0 and all registers containing the
number 0, the machine stops (it reaches the instruction lh : halt) with the first k
registers containing the numbers s1, . . . , sk (and all other registers being empty).

Without loss of generality, in the succeeding proofs we will assume that in each
ADD instruction l1 : (A (r) , l2, l3) and in each SUB instruction l1 : (S (r) , l2, l3)
the labels l1, l2, l3 are mutually distinct (for a short proof see [7]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines; especially we know that three reg-
isters are enough to generate any recursively enumerable set of natural numbers,
where, moreover, the only instructions on the first register are ADD instructions
(see [10], [4]).

2.2 Tissue P systems with symport/antiport rules

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [13]; comprehensive information can be found on the P systems web page
http://psystems.disco.unimib.it.



10 A. Alhazov, R. Freund, M. Oswald

Tissue P systems were introduced in [9], and tissue-like P systems with channel
states were investigated in [7]. Here we deal with the following type of systems
omitting the channel states:

A tissue P system (of degree m ≥ 1) with symport/antiport rules is a construct

Π =
(
m, O, T, w1, . . . , wm, ch, (R (i, j))(i,j)∈ch

)
,

where m is the number of cells, O is the alphabet of objects, T ⊆ O is the al-
phabet of terminal objects, w1, . . . , wm are strings over O representing the ini-
tial multiset of objects present in the cells of the system (it is assumed that
the m cells are labelled with 1, 2, . . . , m, and, moreover, we assume that all
objects from O appear in an unbounded number in the environment), ch ⊆
{(i, j) | i, j ∈ {0, 1, 2, . . . , m} , (i, j) 6= (0, 0)} is the set of links (channels) between
cells (these were called synapses in [7]; 0 indicates the environment), R (i, j) is a
finite set of antiport rules of the form x/y, for some x, y ∈ O∗, associated with the
channel (i, j) ∈ ch.

An antiport rule of the form x/y ∈ R (i, j) for the ordered pair (i, j) of cells
means moving the objects specified by x from cell i (from the environment, if
i = 0) to cell j, at the same time moving the objects specified by y in the opposite
direction. The rules with one of x, y being empty are, in fact, symport rules, but
we do not always explicitly consider this distinction here, as it is not relevant for
what follows. For short, we shall also speak of a tissue P system only when dealing
with a tissue P system with symport/antiport rules as defined above.

The computation starts with the multisets specified by w1, . . . , wm in the m
cells; in each time unit, a rule is used on each channel for which a rule can be used
(if no rule is applicable for a channel, then no object passes over it). Therefore,
the use of rules is sequential at the level of each channel, but it is parallel at the
level of the system: all channels which can use a rule must do it (the system is
synchronously evolving). The computation is successful if and only if it halts.

The result of a halting computation is the vector which describes the multi-
plicity of objects from T present in cell 1 in the halting configuration (the objects
from O− T are ignored when considering the result). The set of all k-dimensional
vectors computed in this way by the system Π is denoted by N(Π, k). The family
of sets N(Π, k) of vectors computed as above by systems with at most n symbols
and m cells is denoted by NOntP ′m (k). When any of the parameters k,m, n is not
bounded, it is replaced by ∗.

In [7], only channels (i, j) with i 6= j are allowed, and, moreover, for any i, j
only one channel out of {(i, j) , (j, i)} is allowed, i.e., between two cells (or one cell
and the environment) only one channel is allowed (as we shall see in Section 5, this
technical detail may influence considerably the computational power). The family
of sets N(Π, k) of vectors computed as above by such tissue P systems with at
most m cells is denoted by NOntPm (k).

In the following, we will only consider sets of natural numbers, i.e., the case k =
1. Hence, we will omit the parameter k, i.e., we will write N (Π) as well as NOntP ′m
and NOntPm only. Moreover, in the following we will not distinguish between



Tissue P Systems with Antiport Rules 11

a language L ⊆ {a}∗ and the corresponding set of natural numbers Ps (L) ={
k | ak ∈ L

}
, the Parikh set of L.

3 Computational Completeness with One Symbol

In [5] it was shown that one symbol is enough for obtaining computational com-
pleteness when using at least seven cells:

Theorem 1. NRE = NO1tPn for all n ≥ 7.

Omitting the condition that for any i, j only one channel out of {(i, j) , (j, i)}
is allowed, at least one cell can be saved (i.e., the one used as the trap, see [5]):

Theorem 2. NRE = NO1tP
′
n for all n ≥ 6.

4 Computational Completeness with Two and Three
Symbols

As we are going to prove in this section, there is a trade-off between the number
of cells and the number of symbols: as our main result, we show that in the case of
allowing two channels between a cell and the environment (we can restrict ourselves
to only one channel between cells) computational completeness can be obtained
with two cells and three symbols as well as with three cells and two symbols,
respectively. We first show that when allowing only two symbols we need at most
three cells for obtaining computational completeness:

Theorem 3. NRE = NOntP ′m for all n ≥ 2 and m ≥ 3.

Proof. We only prove NRE ⊆ NO2tP
′
3.

Let us consider a register machine M = (3, R, l0, lh) with three registers gen-
erating L ∈ NRE. We now construct the tissue P system (of degree 3)

Π =
(
3, {a, b} , {a} , w1, λ, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(0, 1) , (0, 2) , (0, 3) , (1, 0) , (1, 2) , (2, 0) , (2, 3) ,
(3, 0) , (3, 1)} ,

which simulates the actions of M in such a way that Π halts if and only if M
halts, thereby representing the final contents of register 1 of M by the correspond-
ing multisets of symbols in the first cell (and no other symbols contained there).
Throughout the computation, cell i of Π represents the contents of register i by
the corresponding number of symbols a, whereas specific numbers of the symbols
b represent the instructions to be simulated; moreover, b also has the function of
a trap symbol, i.e., in case of the wrong choice for a rule to be applied we take



12 A. Alhazov, R. Freund, M. Oswald

in so many symbols b that we can never again get rid of them and therefore get
“trapped” in an infinite loop.

An important part of the proof is to define a suitable encoding c for the in-
structions of the register machine. Without loss of generality we assume the labels
of M to be positive integers such that the labels assigned to ADD and SUB in-
structions have the values di + 1 for 0 ≤ i < t, as well as l0 = 0 and lh = t− 1, for
some t ≥ 1 and some constant d > 1 which allows us to have d consecutive codes
for each instruction. As we shall see, in this proof it suffices to take d = 7.

We now define the encoding c on non-negative integers in such a way that
c : N → N is a linear function that has to obey to the following additional
conditions:

• For any i, j with 1 ≤ i, j < dt, c (i) + c (j) > c (dt) , i.e., the sum of the codes
of two instruction labels has to be larger than the largest code c (dt) we will
ever use for the given M .

• The distance g between any two codes c (i) and c (i + 1) has to be large enough
to allow one copy of the symbol b to be used for appearance checking as well as
to allow specific numbers between 1 and g of copies of b to detect an incorrect
application of rules.

As we shall see in the construction of the rules below, we may take

g = 2.

A function c fulfilling all the conditions stated above then, for example, is

c (x) = gx + gdt = 2x + 14t, for x ≥ 0.

With l0 = 0 we therefore obtain

c (l0) = 14t and w1 = bc(l0) = b14t.

Finally, we have to find a number f which is so large that after the introduction
of f symbols we inevitably enter an infinite loop with the rule b2f/b2; as we shall
see below, we can take

f = 2c (dt) .

Equipped with this coding function c and the constants defined above we are
now able to define the following sets of symport/antiport rules for simulating the
actions of the given register machine M :

R(0,1) =
{
b2f/b2

}
,

R(0,2) =
{
b2f/b2

}
,

R(0,3) =
{
b2f/b2

}
,



Tissue P Systems with Antiport Rules 13

R(1,0) =
{
bc(l1)/bc(l2)a, bc(l1)/bc(l3)a | l1 : (A(1), l2, l3) ∈ R

}
∪ {

bc(l1)/bc(l1+1)a, bc(l1+2)/bc(l2), bc(l1+2)/bc(l3) |
l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪ {
bc(l1)/bc(l1+1)+1, bc(l1+2)/bc(l1+3), bc(l1+4)/bc(l3),

bc(l1)/bc(l1+5), bc(l1+6)/bc(l2) |
l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪ {
bc(lh)/λ

}
,

R(1,2) =
{
bc(l1+1)a/λ | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪ {
bc(l1+1)+1/λ, bc(l1+3)/λ, bc(l1+5)/λ |

l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}} ,

R(2,0) =
{
ba/b2f

}
,

R(2,3) =
{
bc(l1+1)/λ | l1 : (A(2), l2, l3) ∈ R

}
{
bc(l1+1)a/λ | l1 : (A(3), l2, l3) ∈ R

}
∪ {

bc(l1+1)/λ, bc(l1+3)+1/λ, bc(l1+5)a/λ |
l1 : (S(2), l2, l3) ∈ R}

∪ {
bc(l1+1)+1/λ, bc(l1+3)/λ, bc(l1+5)/λ |

l1 : (S(3), l2, l3) ∈ R} ,

R(3,0) =
{
bc(l1+1)/bc(l1+2) | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪ {
bc(l1+1)/bc(l1+2), bc(l1+3)+1/bc(l1+4),

bc(l1+5)a/bc(l1+6) | l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}}
∪ {

ba/b2f
}

,

R(3,1) =
{
bc(l1+2)/λ | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}}

∪ {
bc(l1+2)/λ, bc(l1+4)/λ, bc(l1+6)/λ |

l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}} .

The correct work of the rules in Π can be described as follows:

1. Throughout the whole computation in Π, the application of rules is directed
by the code bc(l) for some l ≤ lh; in order to guarantee the correct sequence of
encoded rules, superfluous symbols b in case of a wrong choice guarantee an
infinite loop with the symbols b by the “trap rule”

b2f/b2

in the rule sets R(0,i), i ∈ {1, 2, 3} .
The number 2f is so large that even in cell 1 which allows for the elimination
of c (lh) symbols b enough symbols b remain to repeat the “trap rule” b2f/b2.

2. Each ADD instruction l1 : (A(1), l2, l3) of M is directly simulated by the rules
bc(l1)/bc(l2)a,
bc(l1)/bc(l3)a

in R(1,0) in one step. The ADD instructions l1 : (A(r), l2, l3) of M, r ∈ {2, 3} ,
are simulated in six steps in such a way that the new symbol a is transported
to the corresponding cell r and, moreover, in cell 3 the code c (l1) is exchanged
with the code c (l1 + 1) in order to guarantee that when returning to cell 1 a
different code arrives which does not allow for misusing a symbol a represent-
ing the contents of register 1 in cell 1 to start a new cycle with the original



14 A. Alhazov, R. Freund, M. Oswald

code. For example, the simulation of an ADD instruction l1 : (A(2), l2, l3) is
accomplished by applying the following sequence of rules:

bc(l1)/bc(l1+1)a from R(1,0),

bc(l1+1)a/λ from R(1,2),

bc(l1+1)/λ from R(2,3),

bc(l1+1)/bc(l1+2) from R(3,0),

bc(l1+2)/λ from R(3,1),

bc(l1+2)/bc(l2), bc(l1+2)/bc(l3) from R(1,0).
If we do not choose one of the correct rules, then an infinite loop will be entered
by the rule b2f/b2 from the rule sets R(0,i), i ∈ {1, 2, 3}, as the coding function
has been chosen in such a way that instead of the correct rule for a label l
only rules for labels l′ < l could be chosen, whereas on the other hand, the
number of symbols b is not large enough for allowing the remaining rest being
interpreted as the code of another instruction label.

3. For simulating the decrementing step of a SUB instruction l1 : (S(r), l2, l3)
from R we send the code bc(l1+5) to the corresponding cell r, where a correct
continuation is only possible if this cell contains at least one symbol a. For
example, decrementing register 2 is accomplished by applying the following
sequence of six rules:

bc(l1)/bc(l1+5) from R(1,0),

bc(l1+5)/λ from R(1,2),

bc(l1+5)a/λ from R(2,3),

bc(l1+5)a/bc(l1+6) from R(3,0),

bc(l1+6)/λ from R(3,1),

bc(l1+6)/bc(l2) from R(1,0).
Again we notice that if at some moment we do not choose the correct rule,
then the application of the rule b2f/b2 will cause an infinite loop.

4. For simulating the zero test, i.e., the case where the contents of register r is
zero, of a SUB instruction l1 : (S(r), l2, l3) from R we send the code bc(l1+1)

together with one additional copy of the symbol b to cell r, where this addi-
tional symbol b may cause the application of the rule ba/b2f which the will lead
to an infinite computation. In cell 3, the code bc(l1+1) is exchanged with the
code bc(l1+2), which is exchanged with bc(l1+3) in cell 1. This code bc(l1+3) then
captures the additional symbol b left back in cell r, and in cell 3 this additional
symbol b goes out together with code bc(l1+3), instead, code bc(l1+4) continues
and in cell 1 allows for replacing it with bc(l2). For example, for testing register
3 for zero we take the following rules:

bc(l1)/bc(l1+1)+1 from R(1,0),

bc(l1+1)+1/λ from R(1,2),

bc(l1+1)+1/λ from R(2,3),

bc(l1+1)/bc(l1+2) from R(3,0),

bc(l1+2)/λ from R(3,1),



Tissue P Systems with Antiport Rules 15

bc(l1+2)/bc(l1+3) from R(1,0),

bc(l1+3)/λ from R(1,2),

bc(l1+3)/λ from R(2,3),

bc(l1+3)+1/bc(l1+4) from R(3,0),

bc(l1+4)/λ from R(3,1),

bc(l1+4)/bc(l3) from R(1,0).
Once again we notice that if at some moment we do not choose the correct
rule, then the application of the rule b2f/b2 will cause an infinite loop.

5. Finally, for the halt label lh we take the rule
bc(lh)/λ,

hence, the work of Π will stop exactly when the work of M stops (provided
the system has not become overflowed by symbols b due to a wrong non-
deterministic choice during the computation).

From the explanations given above we conclude that Π halts if and only if M
halts, and moreover, the final configuration of Π represents the final contents of
the registers in M. These observations conclude the proof. 2

Instead of the second channels (0, i) , i ∈ {1, 2, 3} , between the cells and the
environment we could also use a fourth cell which then acts as a trap:

Corollary 1. NRE = NOntPm for all n ≥ 2 and m ≥ 4.

Proof. We only prove NRE ⊆ NO2tP4.
Let us consider the tissue P system (of degree 4)

Π ′ =
(
4, {a, b} , {a} , w1, λ, λ, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(1, 0) , (1, 2) , (2, 0) , (2, 3) , (3, 0) , (3, 1) ,
(4, 0) , (4, 1) , (4, 2) , (4, 3)} ,

where the rule sets R (i, j) for

(i, j) ∈ {(1, 0) , (1, 2) , (2, 0) , (2, 3) , (3, 0) , (3, 1)}
are exactly the same as in the proof of Theorem 3; the additional sets R (4, j) for
j ∈ {1, 2, 3} contain the “trap rule” λ/b2 which starts the trap represented by
the rule b/b in R (4, 0) . Except for the way of trapping the system, Π ′ works in
the same way as the system Π constructed in the proof of Theorem 3, and this
completes the proof. 2

On the other hand, when the number of objects is increased to three, we need
one cell less:

Theorem 4. NRE = NOntP ′m for all n ≥ 3 and m ≥ 2.

Proof. We only prove NRE ⊆ NO3tP
′
2.

As in the previous proof, we consider a register machine M = (3, R, l0, lh) with
three registers generating L ∈ NRE; we now construct the tissue P system (of
degree 2)



16 A. Alhazov, R. Freund, M. Oswald

Π =
(
2, {a, b, c} , {a} , w1, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(0, 1) , (0, 2) , (1, 0) , (1, 2) , (2, 0)} ,

which simulates the actions of M in such a way that throughout the computation,
specific numbers of the symbols b represent the instructions to be simulated, the
number of symbols a in cell 1 of Π represents the contents of register 1 by the
corresponding number of symbols a and the new symbol c represents the contents
of registers 2 and 3 by the corresponding number of symbols c in cells 1 and 2,
respectively.

We shall use the same encoding c as in the previous proofs. The zero test now
uses the rule bc/b2f in R(1,0) or R(2,0), respectively.

In sum, we define the following sets of symport/antiport rules for simulating
the actions of the given register machine M :

R(0,1) =
{
b2f/b2

}
,

R(0,2) =
{
b2f/b2

}
,

R(1,0) =
{
bc(l1)/bc(l2)a, bc(l1)/bc(l3)a | l1 : (A(1), l2, l3) ∈ R

}
∪ {

bc(l1)/bc(l2)c, bc(l1)/bc(l3)c | l1 : (A(2), l2, l3) ∈ R
}

∪ {
bc(l1)/bc(l1+1)c, bc(l1+2)/bc(l2), bc(l1+2)/bc(l3) |

l1 : (A(3), l2, l3) ∈ R}
∪ {

bc(l1)/bc(l1+1)+1, bc(l1+2)+1/bc(l3), bc(l1)c/bc(l2) |
l1 : (S(2), l2, l3) ∈ R}

∪ {
bc(l1)/bc(l1+1)+1, bc(l1+2)/bc(l1+3), bc(l1+4)/bc(l3),

bc(l1)/bc(l1+5), bc(l1+6)/bc(l2) |
l1 : (S(3), l2, l3) ∈ R}

∪ {
bc(lh)/λ, bc/b2f

}
,

R(1,2) =
{
bc(l1+1)c/λ, λ/bc(l1+2) | l1 : (A(3), l2, l3) ∈ R

}
∪ {

bc(l1+1)/λ, λ/bc(l1+2) | l1 : (S(2), l2, l3) ∈ R
}

∪ {
bc(l1+1)+1/λ, λ/bc(l1+2)/λ, bc(l1+3)/λ,

λ/bc(l1+4), bc(l1+5)/λ, λ/bc(l1+6) |
l1 : (S(3), l2, l3) ∈ R}

∪ {
b4/λ, λ/b2

}
,

R(2,0) =
{
bc(l1+1)/bc(l1+2) | l1 : (A(3), l2, l3) ∈ R

}
∪ {

bc(l1+1)/bc(l1+2) | l1 : (S(2), l2, l3) ∈ R
}

∪ {
bc(l1+1)/bc(l1+2), bc(l1+3)+1/bc(l1+4),

bc(l1+5)c/bc(l1+6) | l1 : (S(3), l2, l3) ∈ R
}

∪ {
bc/b2f

}
.

As one can easily see, Π halts if and only if M halts, and moreover, in the final
configuration of Π cell 1 represents the final contents of register 1 in M. If at some
moment we do not use the correct rule, then an infinite loop will be entered by
applying the rule b2f/b2 from the rule sets R(0,i), i ∈ {1, 2} . These observations
conclude the proof. 2

Corollary 2. NRE = NOntPm for all n ≥ 3 and m ≥ 3.



Tissue P Systems with Antiport Rules 17

Proof. We only prove NRE ⊆ NO3tP3. The result follows from Theorem 4 as the
proof of Corollary 1 followed from the proof of Theorem 3:

Let us consider the tissue P system (of degree 3)

Π ′ =
(
3, {a, b, c} , {a} , w1, λ, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(1, 0) , (1, 2) , (2, 0) , (3, 0) , (3, 1) , (3, 2)} ,

where the rule sets R (i, j) for (i, j) ∈ {(1, 0) , (1, 2) , (2, 0)} are exactly the same
as in the proof of Theorem 4; the additional sets R (3, j) for j ∈ {1, 2} contain
the “trap rule” λ/b2 which starts the trap represented by the rule b/b in R (3, 0) .
Except for the way of trapping the system, Π ′ works in the same way as the system
Π constructed in the proof of Theorem 4, and this completes the proof. 2

5 Tissue P Systems with One Cell

In this section we investigate the remaining case of using only one cell, in which
case it turns out that the definition of the tissue P system is essential, i.e., com-
putational completeness can only be obtained with two channels between the cell
and the environment, whereas we can only generate regular sets when using only
one channel between the cell and the environment.

The proof of the following completeness result can be obtained following the
construction given in [1] for P systems and therefore is omitted:

Theorem 5. NRE = NOntP ′1 for all n ≥ 5.

We now consider the case of tissue P systems with only one channel between
the cell and the environment. In the simplest case of only one symbol, we only get
finite sets:

Example 1. To each finite one-letter language L we can construct the tissue P
system

Π = (1, {a} , {a} , w1, {(1, 0)} , R (1, 0)) , where
w1 = am, with m = max

{
i | ai ∈ L

}
, and

R (1, 0) = {am/aj | aj ∈ L, j < m}.

Obviously, Ps (L) = N (Π) .

Theorem 6. NFIN = NO1tP1 = NO1tP
′
1.

Proof. The inclusion NFIN ⊆ NO1tP1 directly follows from Example 1. The
inclusion NO1tP1 ⊆ NO1tP

′
1 directly follows from the definitions.

The inclusion NFIN ⊇ NO1tP
′
1 can easily be argued as follows: Consider a

tissue P system



18 A. Alhazov, R. Freund, M. Oswald

Π = (1, {a} , {a} , w1, {(1, 0) , (0, 1)} , R (1, 0) , R (0, 1)) ;

then N (Π) ⊆ {
aj | j < m

}
(hence, N(Π) ∈ NFIN), where m = min{i | ai/ak ∈

R(1, 0) or ak/ai ∈ R(0, 1)}, as to any multiset aj with j ≥ m in the single cell still
a rule from R (1, 0) ∪R (0, 1) can be applied. 2

For describing the sets generated by tissue P systems with one cell and more
than one symbol, we need the notion of a minimal deterministic finite automaton:

A deterministic finite automaton (DFA for short) is a quintuple M =
(Q,T, δ, q0, F ), where Q is the finite set of states, T is the input alphabet,
δ : Q × T → Q is the state transition function, q0 ∈ Q is the initial state, and
F ⊆ Q is the set of final states. The transition function δ can be extended in a
natural way to a function δ : Q × T ∗ → Q. The language accepted by the DFA
M is the set of all strings w ∈ T ∗ that are accepted by M in such a way that
δ (q0, w) ∈ F . As is well known, for each regular language L there exists a minimal
DFA accepting L. For regular languages over a one-letter alphabet, the minimal
DFA accepting an infinite language is of the form ({qi | 0 ≤ i ≤ n} , {a} , δ, q0, F )
with δ being of the form δ (qi, a) = qi+1 for 0 ≤ i < n and δ (qn, a) = qj for
some j with 0 ≤ j ≤ n. For any finite language L over a one-letter alphabet, the
minimal DFA accepting L obeys to the condition δ (qi, a) = qi+1 for 0 ≤ i < n,
δ (qn, a) = qn, and qn /∈ F .

If we allow at least two symbols, then all regular sets can be obtained:

Example 2. To each infinite regular language L ∈ REG accepted by the mini-
mal DFA ({qi | 0 ≤ i ≤ n} , {a} , δ, q0, F ) with δ (qi, a) = qi+1 for 0 ≤ i < n and
δ (qn, a) = qj for some j with 0 ≤ j ≤ n we can construct the tissue P system

Π = (1, {a, b} , {a} , bb, {(1, 0)} , R (1, 0)), where
R (1, 0) =

{
bb/ba, ba/ban−j+2

} ∪ {
bb/ai | qi ∈ F, i < j

}
∪ {

ba/ai | qi ∈ F, i ≥ j
}

.
In the “state” bb we can generate all elements ai for qi ∈ F with i < j or else we
directly change to the “state” ba, which allows us to repeat the loop between qj

and qn arbitrarily often before we finish with introducing ai for qi ∈ F with i ≥ j
at the same time also eliminating the single symbol b which definitely terminates
the derivation in Π. Obviously, N (Π) = Ps (L).

The following result shows that with only one cell and one channel between
the single cell and the environment only regular sets can be generated:

Theorem 7. NREG = NOntP1 for all n ≥ 2.

Proof. As shown by the constructions given in Examples 1 and 2, NREG ⊆
NOntP1 for all n ≥ 2. Hence, it remains to show the opposite inclusion NREG ⊇
NOntP1.

As is well known from [8], NREG = NMAT, hence, it remains to show that
NOntP1 ⊆ NMAT which can be done in a similar way as in the proof of Lemma
2 in [3]:

Consider the tissue P system



Tissue P Systems with Antiport Rules 19

Π = (1, O, {a} , w1, {(1, 0)} , R (1, 0)) .

A set M representing the reachable configurations, i.e., the possible multisets con-
tained in the single cell during any computation in the tissue P system can easily
be generated by a matrix grammar without appearance checking. Moreover, the
set K representing the multisets to which a rule from R (1, 0) can be applied is
regular, hence, the complement Kc of K is regular, too. Therefore, the Parikh set
of the projection of M ∩ Kc onto {a}∗ is in NMAT due to the closure proper-
ties of the family of languages generated by matrix grammars without appearance
checking. We leave the details of the proof to the reader. 2

6 Conclusion

In sum, for tissue P systems with only one channel between two cells and between
a cell and the environment we could show the results listed in Table 1 (we have
omitted the proof of the completeness result NRE = NOntPm for all n ≥ 4 and
m ≥ 2, which needs a different proof technique following the construction given in
[1] for P systems):

symbols
4 NREG NRE NRE NRE NRE NRE NRE
3 NREG ? NRE NRE NRE NRE NRE
2 NREG ? ? NRE NRE NRE NRE
1 NFIN ? ? ? ? ? NRE

1 2 3 4 5 6 7 cells

Table 1. Families NOmtPn

The main open question concerns a characterization of the sets of natural
numbers in NO2tP2, NO2tP3, and NO3tP2. Further, it would be interesting to
find the minimal number l such that NO1tPl contains all recursively enumerable
sets of natural numbers, whereas the families NO1tPj with j < l do not fulfill
this condition. Finally, it remains to find characterizations of the sets of natural
numbers in those families NO1tPj that do not contain all recursively enumerable
sets of natural numbers.

The most interesting open problems for the families NOntP ′m are to find the
minimal number k as well as the minimal number l such that NOktP ′1 and NO1tP

′
l ,

respectively, contain all recursively enumerable sets of natural numbers, whereas
the families NOitP

′
1 and NO1tP

′
j with i < k and j < l, respectively, do not fulfill

this condition. Moreover, it remains to find characterizations of the sets of natural
numbers in those families NOntP ′m that do not contain all recursively enumerable
sets of natural numbers.

Related open problems concern the families NOmPn of sets of natural numbers
generated by P systems with symport/antiport rules as well as n symbols and m



20 A. Alhazov, R. Freund, M. Oswald

symbols
5 NRE NRE NRE NRE NRE NRE
4 ? NRE NRE NRE NRE NRE
3 ? NRE NRE NRE NRE NRE
2 ? ? NRE NRE NRE NRE
1 NFIN ? ? ? ? NRE

1 2 3 4 5 6 cells

Table 2. Families NOmtP ′n

membranes. The first result proving computational completeness for P systems
with three symbols and four membranes was obtained in [14] and continued in
[1], where P systems with five symbols in only one membrane were shown to be
computationally complete. The main open problem in the case of P systems is the
question whether one symbol is sufficient to obtain computational completeness
as was shown for the case of tissue P systems in [5].

Acknowledgement

The work of Marion Oswald was supported by FWF-project T225-N04.

References

1. A. Alhazov, R. Freund: P systems with one membrane and symport/antiport rules of
five symbols are computationally complete. In Proceedings of the Third Brainstorming
Week on Membrane Computing (M.A. Gutiérrez, A. Riscos, F.J. Romero, D. Sburlan,
eds.), Report RGNC 01/05, University of Seville, 2005, in press.

2. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

3. R. Freund, A. Leporati, M. Oswald, C. Zandron: Sequential P systems with unit rules
and energy assigned to membranes. In Machines, Computations and Universality,
MCU’2004 (M. Margenstern, ed.), LNCS 3354 (2005), 200-210.

4. R. Freund, M. Oswald: P Systems with activated/prohibited membrane channels.
In Membrane Computing. International Workshop WMC 2002, Curtea de Argeş,
Romania, Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.),
LNCS 2597 (2003), 261–268.

5. R. Freund, M. Oswald: Tissue P systems with symport/antiport rules of one symbol
are computationally complete. Downloadable from [17].

6. R. Freund, A. Păun: Membrane systems wih symport/antiport rules: universality
results. In Membrane Computing. International Workshop WMC 2002, Curtea de
Argeş, Romania, Revised Papers (Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
eds.), LNCS 2597 (2003), 270–287.

7. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.
In Proceedings of the Second Brainstorming Week on Membrane Computing (Gh.
Păun, A. Riscos, A. Romero, F. Sancho, eds.), Report RGNC 01/04, University of
Seville, 2004, 206–223, and Theoretical Computer Science, 330 (2005), 101–116.



Tissue P Systems with Antiport Rules 21

8. D. Hauschildt, M. Jantzen: Petri net algorithms in the theory of matrix grammars.
Acta Informatica, 31 (1994), 719–728.

9. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodriguez-Paton: Tissue P systems. Theo-
retical Computer Science, 296, 2 (2003), 295–326.

10. M.L. Minsky: Computation: Finite and Infinite Machines, Prentice Hall, Englewood
Cliffs, New Jersey, 1967.

11. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3 (2002), 295–306.

12. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000) 108–143, and TUCS Research Report, 208 (1998) (http://www.tucs.fi)

13. Gh. Păun: Computing with Membranes: An Introduction. Springer-Verlag, Berlin,
2002.

14. Gh. Păun, J. Pazos, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón: Symport/antiport P
systems with three objects are universal. Fundamenta Informaticae, 64, 1-4 (2005),
345–358.

15. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (eds.): Membrane Computing.
International Workshop WMC 2002, Curtea de Argeş, Romania, Revised Papers,
LNCS 2597, Springer-Verlag, Berlin, 2003.

16. G. Rozenberg, A. Salomaa (eds.): Handbook of Formal Languages (3 volumes),
Springer-Verlag, Berlin, 1997.

17. The P Systems Web Page: http://psystems.disco.unimib.it




