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Summary. We prove that two classes of symport/antiport P systems with two mem-
branes and with minimal cooperation, namely P systems with symport/antiport rules of
size one and P systems with symport rules of size two, are computationally complete:
(modulo the terminal alphabet) they generate all recursively enumerable sets of vectors
of nonnegative integers. On the other hand, it is known that these systems with one
membrane cannot be universal. Hence, the results we prove are optimal.

1 Introduction

P systems with symport/antiport were introduced in [14], and they use one of
the most important features of membrane systems – the communication. These
systems have two types of rules: symport rules, where several objects go together
from one membrane to another one, and antiport rules, where several objects from
two membranes are exchanged. These operations are very powerful, i.e., P systems
with symport/antiport rules have universal computational power with only one
membrane, e.g., see [6], [7].

Symport/antiport P systems with minimal cooperation, i.e., systems where sym-
port rules move only one object and antiport rules move only two objects across
the same membrane in different directions, are universal. The first proof of this
result can be found in [3], and the corresponding system has nine membranes.

This first result was improved by reducing the number of membranes to six [10],
five [4], and four [7, 11], and finally G. Vaszil [16] showed that three membranes
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are sufficient to generate all recursively enumerable sets of numbers (but his proof
had one disadvantage: the output membrane contained five additional symbols).
In [1], another proof of this latest result was given where the output membrane
did not contain superfluous symbols.

Symport P systems with minimal cooperation, i.e., P systems only having sym-
port rules and only moving one or two objects, were shown to be universal with
four membranes in [9]. In [1], this result was improved down to three membranes.

In this paper we prove that symport/antiport P systems with minimal cooper-
ation, namely P systems with symport/antiport rules of size one or P systems with
symport rules of size two are computationally complete with only two membranes:
(modulo the terminal alphabet) they generate all recursively enumerable sets of
vectors of nonnegative integers. On the other hand, it is known that systems with
such rules in only one membrane cannot be universal, see [8, 17]. Hence, the results
we are going to prove in this paper are already optimal.

Our proofs of both results are based on a simulation of counter automata (or
register machines, see [12] and also [5]), which proof idea was also used in [3], [4],
[6], and [10].

The questions how to obtain these optimal results without using the terminal
objects are still open. However, for symport/antiport tissue P systems with mini-
mal cooperation this problem has successfully been solved in [2], i.e., it was proved
that two cells are enough in order to generate all recursively enumerable sets of
numbers.

2 Basic Notions

A non-deterministic counter automaton is a 5-tuple M = (d,Q, q0, qf , P ), where

• d is the number of counters, and we denote D = {1, ..., d};
• Q is a finite set of states, and without loss of generality, we use the notation

Q = {qi | 0 ≤ i ≤ f} and F = {1, ..., f};
• q0 ∈ Q is the initial state;
• qf ∈ Q is the final state;
• P is a finite set of instructions of the following form:

1. (qi → ql, k+), with i, l ∈ F, i 6= f, k ∈ D (“increment” instruction). This
instruction increments counter k by one and changes the state of the system
from qi to ql.

2. (qi → ql, k−), with i, l ∈ F, i 6= f, k ∈ D “decrement” instruction). If the
value of counter ck is greater than zero, then this instruction decrements
it by 1 and changes the state of the system from qi to ql. Otherwise (when
the value of ck is zero) the computation is blocked in state qi.

3. (qi → ql, k = 0), with i, l ∈ F, i 6= f, k ∈ D (“test for zero” instruction).
If the value of counter k is zero, then this instruction changes the state of
the system from qi to ql. Otherwise (the value stored in counter k is greater
than zero) the computation is blocked in state qi.
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4. Stop. This instruction stops the computation of the counter automaton,
and it can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state
q0 with all counters equal to zero. The result of the computation of a counter
automaton is the value of the first counter when the automaton halts in state
qf ∈ Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of nonnegative integers.

A P system with symport/antiport (symport) is a construct

Π = (O, T, µ, w1, . . . , wk, E, R1, . . . , Rk, i0),

where:

1. O is a finite alphabet of symbols called objects;
2. T ⊆ Q is a set of terminal objects;
3. µ is a membrane structure consisting of k membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k;
4. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset (i.e., a multiset where elements

are present in finite number of copies) of objects associated with the region i
(delimited by membrane i);

5. E ⊆ O is the set of objects that appear in the environment in infinite numbers
of copies;

6. Ri, for each 1 ≤ i ≤ k, is a finite set of symport / antiport rules associated
with the region i; these rules are of the forms (x, in), (y, out), and (y, out;x, in),
respectively, where x, y ∈ O∗ (for symport P systems, Ri consists rules of the
forms (x, in) and (y, out) only);

7. i0 is the label of an elementary membrane of µ that identifies the corresponding
output region.

A symport/antiport (symport) P system is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure µ), where to each membrane i there are assigned
a multiset of objects wi and a finite set of symport/antiport (symport) rules Ri,
1 ≤ i ≤ k. A rule (x, in) ∈ Ri permits the objects specified by x to be moved
into region i from the immediately outer region. Notice that for P systems with
symport the rules in the skin membrane of the form (x, in), where x ∈ E∗, are
forbidden. A rule (x, out) ∈ Ri permits the multiset x to be moved from region i
into the outer region. A rule (y, out;x, in) permits the multisets y and x, which
are situated in region i and the outer region of i respectively, to be exchanged. It
is clear that a rule can be applied if and only if the multisets involved by this rule
are present in the corresponding regions.
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As usual, a computation in a symport/antiport (symport) P system is ob-
tained by applying the rules in a non-deterministic maximally parallel manner.
Specifically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport (symport) rules do not allow the system to
modify the objects placed inside the regions. Initially, each region i contains the
corresponding finite multiset wi, whereas the environment contains only objects
from E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration it reaches a
configuration where no rule can be applied. The result of a successful computation
is a natural number that is obtained by counting the terminal objects present in
region i0. Given a P system Π, the set of natural numbers computed in this way
by Π is denoted by N(Π)T . If the multiplicity of each object is counted separately,
then a vector of natural numbers is obtained, denoted by Ps(Π)T , see [15].

By NOPm(symr, antit)T (NOPm(symr)T ) we denote the family of sets of
natural numbers (non-negative integers) that are generated by a P system with
symport/antiport (symport) having at most m > 0 membranes, symport rules
of size at most r ≥ 0, and antiport rules of size at most t ≥ 0. The size of a
symport rule (x, in) or (x, out) is given by |x|, while the size of an antiport rule
(y, out; x, in) is given by max{|x|, |y|}. By NRE we denote the family of recursively
enumerable sets of non-negative numbers. If we replace numbers by vectors, then
in the notations of this paragraph N is replaced by Ps.

3 Main Results

We first show that two membranes are enough to obtain computational com-
pleteness with symport/antiport rules of minimal size provided we only count the
terminal objects.

Theorem 1. NOP2(sym1, anti1)T = NRE.

Proof. We simulate a counter automaton M = (d,Q, q0, qf , P ) which starts with
empty counters. We also suppose that all instructions from P are labelled in a
one-to-one manner with elements of {1, . . . , n} = I; I is the disjoint union of {n}
as well as I+, I−, and I=0, where by I+, I−, and I=0 we denote the set of labels
for the “increment”, “decrement”, and “test for zero” instructions, respectively.

We now construct the P system Π1 as follows:

Π1 = (O, T, [
1

[
2

]
2

]
1
, w1, w2, E, R1, R2, 2),

T = {c1},
O = E ∪ {bj , b

′
j | j ∈ I} ∪ {#1, F, Ic},

E = Q ∪ {aj , a
′
j , a

′′
j | j ∈ I} ∪ C ∪ {F},

C = {ci | 1 ≤ i ≤ d},
w1 = q0Ic#1#1,
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w2 =
∏

j∈I

bj

∏

j∈I

b′j ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i ∈ {1, 2}.

The functioning of this system may be split into two stages:

1. the simulation of instructions of the counter automaton;
2. the termination of the computation.

We code the counter automaton as follows: Region 1 will hold the current state
of the automaton, represented by a symbol qi ∈ Q; region 2 will hold the value of
all counters, represented by the number of occurrences of symbols ck ∈ C, k ∈ D,
where D = {1, ..., d}. We also use the following idea realized by phase “START”
below: from the environment, we bring symbols ck into region 1 all time during
the computation. This process may only be stopped if all stages finish correctly;
otherwise, the computation will never stop.

We split our proof into several parts which depend on the logical separation
of the behavior of the system. We will present rules and initial symbols for each
part, but we remark that the system we present is the union of all these parts.
The rules Ri are given by three phases:

1. START (stage 1);
2. RUN (stage 1);
3. END (stage 2).

1. START.

R1,s = {1s1 : (Ic, in), 1s2 : (Ic, out; ck, in) | k ∈ D},
R2,s = ∅.

Symbol Ic brings “sufficiently many” symbols ck from environment into re-
gion 1.

While Ic is bringing symbols ck into region 1 (rules 1s1,1s2), instructions
(j : qi → ql, kγ), γ ∈ {+,−, = 0}, of the counter automaton are simulated as
shown in the following.

2. RUN.

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, kγ) ∈ P,

γ ∈ {+,−, = 0}, k ∈ D}
∪ {1r2 : (bj , out; a′j , in), 1r3 : (aj , out; bj , in),
1r4 : (#1, out; bj , in) | j ∈ I}

∪ {1r5 : (a′j , out; a′′j , in) | j ∈ I+ ∪ I−}
∪ {1r6 : (#1, out;#1, in)}
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∪ {1r7 : (b′j , out; a′′j , in), 1r8 : (a′j , out; b′j , in),
1r9 : (#1, out; b′j , in) | j ∈ I=0}

∪ {1r10 : (a′′j , out, ql, in) | (j : qi → ql, kγ) ∈ P,

γ ∈ {+,−, = 0}, k ∈ D},

R2,r = {2r1 : (bj , out; aj , in) | j ∈ I}
∪ {2r2 : (aj , out; ck, in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {2r3 : (a′j , in) | j ∈ I+}
∪ {2r4 : (a′j , out; bj , in) | j ∈ I+ ∪ I−}
∪ {2r5 : (aj , out) | j ∈ I− ∪ I=0}
∪ {2r6 : (ck, out; a′j , in) | (j : qi → ql, kγ) ∈ P,

γ ∈ {−, = 0}, k ∈ D}
∪ {2r7 : (b′j , out; bj , in), 2r8 : (b′j , in) | j ∈ I=0}.

The parts of computations illustrated in the following describe different stages
of the evolution of the P system given in the corresponding theorem. For simplic-
ity, we focus on explaining a particular stage and omit the objects that do not
participate in the evolution at that time. Each rectangle represents a membrane,
each variable represents a copy of an object in a corresponding membrane (symbols
outside of the outermost rectangle are found in the environment). In each step,
the symbols that will evolve (will be moved) are written in boldface. The labels of
the applied rules are written above the symbol ⇒.

“Increment” instruction:

aja
′
ja
′′
j ql qick#1#1 bj ⇒1r1 a′ja

′′
j qiql ajck#1#1 bj ⇒2r1

a′ja
′′
j qiql bjck#1#1 aj ⇒1r2,2r2 bja

′′
j qiql aja′j#1#1 ck

Now there are two possibilities: we may either apply
a) rule 1r5 or
b) rule 2r3.

It is easy to see that case a) leads to an infinite computation:

bja′′j qiql aja′j#1#1 ck ⇒1r5,1r3 aja′jqiql bja′′j #1#1 ck ⇒1r2,1r10

ajbjqia′′j a′jql#1#1 ck

After that rule 1r4 will eventually be applied, object #1 will be moved to the
environment and applying rule 1r6 leads to an infinite computation.

Now let us consider case b):
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bja
′′
j qiql aja′j#1#1 ck ⇒1r3,2r3 aja

′′
j qiql bj#1#1 a′jck

We cannot apply rule 1r2 as this leads to an infinite computation (see above).
Hence, rule 2r4 has to be applied:

aja
′′
j qiql bj#1#1 a′jck ⇒2r4 aja′′j qiql a′j#1#1 bjck ⇒1r5

aja
′
jqiql a′′j #1#1 bjck ⇒1r10 aja

′
ja
′′
j qi ql#1#1 bjck

In that way, qi is replaced by ql and ck is moved from region 1 into region 2.

“Decrement” instruction:

aja
′
ja
′′
j ql qi#1#1 bjck ⇒1r1 a′ja

′′
j qiql aj#1#1 bjck ⇒2r1

a′ja
′′
j qiql bj#1#1 ajck ⇒1r2,2r5 bja

′′
j qiql aja′j#1#1 ck ⇒1r3,2r6

aja
′′
j qiql bjck#1#1 a′j ⇒2r4 aja′′j qiql a′jck#1#1 bj ⇒1r5

aja
′
jqiql a′′j ck#1#1 bj ⇒1r10 aja

′
ja
′′
j qi qlck#1#1 bj

In the way described above, qi is replaced by ql and ck is removed from region
2 to region 1.

“Test for zero” instruction:
qi is replaced by ql if there is no ck in region 2, otherwise a′j in region 1

exchanges with ck in region 2 and the computation will never stop.

(i)There is no ck in region 2:

aja
′
ja
′′
j ql qi#1#1 bjb

′
j ⇒1r1 a′ja

′′
j qiql aj#1#1 bjb

′
j ⇒2r1

a′ja
′′
j qiql bj#1#1 ajb

′
j

Now there are two possibilities: we apply either
a) rule 2r7 or
b) rule 1r2.

It is easy to see that the case a) leads to an infinite computation:

a′ja
′′
j qiql bj#1#1 ajb′j ⇒2r7,2r5 a′ja

′′
j qiql ajb′j#1#1 bj ⇒2r1,2r8

a′ja
′′
j qiql bj#1#1 ajb′j ⇒2r7,2r5 · · · ⇒2r1,2r8 a′ja

′′
j qiql bj#1#1 ajb

′
j

⇒1r2,2r5 bja
′′
j qiql aja

′
j#1#1 b′j ⇒1r3 aja

′′
j qiql bja

′
j#1#1 b′j
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Again there are two possibilities: we can apply either
c) rule 1r2 or
d) rule 2r7.
The case c) leads to an infinite computation (rules 1r4 and 1r6).
Now let us consider case d):

aja
′′
j qiql bja

′
j#1#1 b′j ⇒2r7 aja′′j qiql b′ja

′
j#1#1 bj ⇒1r7

ajb′jqiql a′′j a
′
j#1#1 bj ⇒1r8,1r10 aja

′
ja
′′
j qi qlb′j#1#1 bj

There are two possibilities: we can apply either
e) rule 1r7 or
f) rule 2r8.
The case e) leads to infinite computation (rules 1r9 and 1r6).
In case f), the object b′j comes back to region 2.

(b) There is some ck in region 2:
Consider again case d):

aja
′′
j qiql bja′j#1#1 b′jck ⇒2r7,2r6 aja′′j qiql b′jck#1#1 a′jbj ⇒1r7

ajb′jqiql a′′j ck#1#1 a′jbj ⇒1r9,1r10 aja
′′
j #1qi qlb′jck#1 a′jbj

Now the application of rule 1r6 leads to an infinite computation. Hence, we
model correctly the “test for zero” instruction.

3. END.

R1,f = {1f1 : (qf , out; F, in)},
R2,f = {2f1 : (F, in), 2f2 : (F, out; Ic, in)}.

If a successful computation of the counter automaton is correctly simulated,
then qf will appear in region 1 and F will appear in region 2 (rules 1f1 and 2f1).
After that the object Ic will be moved to region 2 (rule 2f2); thus, the computation
will be stopped. 2

A “dual” class of systems OP (sym1, anti1) is the class OP (sym2) where two
objects are moved across the membrane in the same direction rather than in the
opposite ones. We now prove a similar result for this class.

Theorem 2. NOP2(sym2)T = NRE.
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Proof. As in the proof of Theorem 1 we simulate a counter automaton M =
(d,Q, q0, qf , P ) which starts with empty counters. Again we suppose that all in-
structions from P are labelled in a one-to-one manner with elements of {1, . . . , n} =
I and that I is the disjoint union of {n} as well as I+, I−, and I=0, where by I+,
I−, and I=0 we denote the set of labels for the “increment”, “decrement”, and
“test for zero” instructions, respectively. Moreover, we define I ′ = I \ {n} and
Q′ = Q\{q0}. We also suppose that there is only one instruction with initial state
q0 (labelled with number 1) and that the counter automaton empties all coun-
ters except for the first counter before stopping with the instruction labelled by n
(which we suppose to be the only one with the Stop instruction).

We construct the P system Π2 as follows:

Π2 = (O, T, [1 [2 ]2 ]1, w1, w2, E, R1, R2, 2),
O = E ∪ {#1, #2, $, f} ∪Q ∪ {bj , gj | j ∈ I} ∪ {g′j | j ∈ I ′},
T = {c1},
E = {aj , a

′
j , dj , d

′
j | j ∈ I} ∪ C,

C = {ci | 1 ≤ i ≤ d},
w1 = #2$fq0a1

∏

j∈I

bj ,

w2 = #1

∏

qi∈Q′
qi

∏

j∈I

gj

∏

j∈I′
g′j ,

Ri = Ri,s ∪Ri,r ∪Ri,f , i ∈ {1, 2}.

The functioning of this system again may be split into two stages:

1. the simulation of instructions of the counter automaton;
2. the termination of the computation.

We code the counter automaton as follows: The environment will hold the
current state of the automaton, represented by a symbol qi ∈ Q, membrane 1 will
hold the value of all counters, represented by the number of occurrences of symbols
ck, k ∈ D, where D = {1, ..., d}. We also use the following idea realized by phase
START below: in our system we have a symbol #2 moving from the environment
to membrane 1 and back in an infinite loop. This loop can only be stopped if all
stages have completed correctly. Otherwise, the computation will never stop.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system that we present is the union of all these
parts.

The rules Ri again are given by three phases:

1. START (stage 1);
2. RUN (stage 1);
3. END (stage 2).
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1. START.

R1,s = {1s1 : (#2, out), 1s2 : (#2, in)},
R2,s = ∅.

Notice that system Π2 begins its functioning by applying rule 1s1 and moving
objects q0a1 to region 2 (see phase RUN below). Thus system Π2 starts to simulate
the counter automaton M .

2. RUN.

R1,r = {1r1 : (qiaj , in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−,= 0}, k ∈ D}
∪ {1r2 : (bjgj , out) | j ∈ I+ ∪ I=0}
∪ {1r3 : (ckbj , in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {1r4 : (gjck, out) | (j : qi → ql, k−) ∈ P, k ∈ D}
∪ {1r5 : (a′jgj , in) | j ∈ I ′}
∪ {1r6 : (#1, out), 1r7 : (#1, in)}
∪ {1r8 : (djbj , in) | j ∈ I=0}
∪ {1r9 : (djck, out) | (j : qi → ql, k = 0) ∈ P, k ∈ D}
∪ {1r10 : (a′jql, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−}, k ∈ D}
∪ {1r11 : (a′jg

′
j , out), 1r12 : (d′jg

′
j , in), 1r13 : (d′j , out) | j ∈ I=0}

∪ {1r14 : (djql, out) | (j : qi → ql, k = 0) ∈ P, k ∈ D},
R2,r = {2r1 : (ajbj , in) | j ∈ I ′}

∪ {2r2 : (qi, in) | qi ∈ Q}
∪ {2r3 : (bjgj , out) | j ∈ I ′}
∪ {2r4 : (a′j$, in) | j ∈ I}
∪ {2r5 : (#1$, out)}
∪ {2r6 : (a′jgj , in) | j ∈ I ′}
∪ {2r7 : (a′jql, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−}, k ∈ D}
∪ {2r8 : (a′jg

′
j , out) | j ∈ I=0}

∪ {2r9 : (d′jg
′
j , in) | j ∈ I=0}

∪ {2r10 : (d′jql, out) | (j : qi → ql, k = 0) ∈ P , k ∈ D}

Notice that the starting configuration of Π2 corresponds to the result of the
first step of the simulation of the starting instruction (1r1 is “already made”).
“Increment” instruction:

a′jckqiaj bj$ gjql#1 ⇒1r1 a′jck qiajbj$ gjql#1 ⇒2r1,2r2

a′jck $ qiajbjgjql#1 ⇒2r3 a′jck bjgj$ qiajql#1 ⇒1r2
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ckbjgja′j $ qiajql#1 ⇒1r3,1r5 ckbjgja
′
j$ qiajql#1

Now there are two variants of computations (depending on the application of
rule 1r2 or rule 2r6):
a) Applying rule 1r2:

cka′j ckbjgja′j$ qiajql#1 ⇒1r2,2r4

ckbjgja′j ck qiaja′jql$#1 ⇒1r5,1r3,2r5,2r7

bjgja
′
ja
′
jqlckck$#1 qiaj · · ·

After that application of rules 1r6 and 1r7 leads to infinite computation.
b) Applying rule 2r6:

ckbjgja′j$ qiajql#1 ⇒2r6 ckbj$ qiajgja′jql#1 ⇒2r7

a′jqlckbj$ qiajgj#1 ⇒1r10 a′jql ckbj$ qiajgj#1

qi is replaced by ql and ck is moved into region 1.

“Decrement” instruction:

a′jqiaj ckbj$ gjql#1 ⇒1r1 a′j ckqiajbj$ gjql#1 ⇒2r1,2r2

a′j ck$ qiajbjgjql#1 ⇒2r3 a′j ckgjbj$ qiajql#1 ⇒1r4

ckgja′j bj$ qiajql#1 ⇒1r5 ck bjgja
′
j$ qiajql#1

Now there are two variants of computations (depending on the application of
rule 1r4 or rule 2r6).
c) Applying rule 1r4:

a′jck bjckgja′j$ qiajql#1 ⇒1r4,2r4 a′jgjckck bj qiaja′jql$#1 ⇒1r5,2r5,2r7

ckck a′ja
′
jgjqlbj$#1 qiaj · · ·

After that the application of rules 1r6 and 1r7 leads to an infinite computation.
d) Applying rule 2r6:

ck bjgja′j$ qiajql#1 ⇒2r6 ck bj$ qiajgja′jql#1 ⇒2r7

ck a′jqlbj$ qiajgj#1 ⇒1r10 cka′jql bj$ qiajgj#1
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In that way, qi is replaced by ql and ck is removed from region 1.

“Test for zero” instruction:
qi is replaced by ql if there is no ck in region 1 (case e)), otherwise the compu-

tation will never stop (case f)).
Case e):

a′jdjd
′
jqiaj bj$ gjg

′
jql#1 ⇒1r1 a′jdjd

′
j qiajbj$ gjg

′
jql#1 ⇒2r1,2r2

a′jdjd
′
j $ qiajbjgjg

′
jql#1 ⇒2r3 a′jdjd

′
j bjgj$ qiajg

′
jql#1 ⇒1r2

d′jbjdjgja′j $ qiajg
′
jql#1 ⇒1r8,1r5 d′j djbjgja

′
j$ qiajg

′
jql#1

Again there are two variants of computations, depending on the application of
rule 1r2 or rule 2r6, where applying rule 1r2 leads to an infinite computation (see
case a)). Hence, we only consider the case of applying rule 2r6:

d′j djbjgja′j$ qiajg
′
jql#1 ⇒2r6 d′j djbj$ qiajgja′jg

′
jql#1 ⇒2r8

d′j a′jg
′
jdjbj$ qiajgjql#1 ⇒1r11 a′jg

′
jd
′
j djbj$ qiajgjql#1 ⇒1r12

a′j djbj$g′jd
′
j qiajgjql#1 ⇒2r9 a′j djbj$ qiajgjg

′
jd
′
jql#1 ⇒2r10

a′j d′jqldjbj$ qiajgjg
′
j#1 ⇒1r13,1r14 a′jdjd

′
jql bj$ qiajgjg

′
j#1

Thus, qi is replaced by ql.
Case f):

a′jdjd
′
jqiaj ckbj$ gjg

′
jql#1 ⇒1r1 a′jdjd

′
j ckqiajbj$ gjg

′
jql#1 ⇒2r1,2r2

a′jdjd
′
j ck$ qiajbjgjg

′
jql#1 ⇒2r3 a′jdjd

′
j ckbjgj$ qiajg

′
jql#1 ⇒1r2

d′jbjdjgja′j ck$ qiajg
′
jql#1 ⇒1r8,1r5 d′j ckdjgja′jbj$ qiajg

′
jql#1 ⇒1r9,2r6

ckdjd
′
j bj$ qiajgja′jg

′
jql#1 ⇒2r8 ckdjd

′
j a′jg

′
jbj$ qiajgjql#1 ⇒1r11

a′jckdjg′jd
′
j bj$ qiajgjql#1 ⇒1r12 a′jckdj bj$g′jd

′
j qiajgjql#1 ⇒2r9

a′jckdj bj$ qiajgjg
′
jd
′
jql#1 ⇒2r10 a′jckdj d′jqlbj$ qiajgjg

′
j#1 ⇒1r13

a′jckdjd
′
j qlbj$ qiajgjg

′
j#1
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Further we continue our work only by applying the rules 1s1 and 1s2, thus,
the computation will never stop.
3. END.

R1,f = {1f1 : (qfan, in)}
R2,f = {2f1 : (#2gn, in), 2f2 : (c1an, in), 2f3 : (fan, in), 2f4 : (fgn, out),

2f5 : (an, out)}.

All objects c1 move to region 2, and object #2 moves to region 2, thus we stop
without continuing the loop. 2

4 Final Remarks

Both constructions from Theorem 1 and Theorem 2 can easily be modified to show
that

PsOP2(sym1, anti1)T = PsRE and
PsOP2(sym2)T = PsRE,

i.e., the results proved in Theorem 1 and Theorem 2 can be extended from sets of
natural numbers to sets of vectors of natural numbers.

An interesting open question remains: can we avoid the terminal alphabet?
The answer partially is yes, i.e., the proof of Theorem 1 can be modified in such
a way that only three additional symbols remain, but so far we were not able
to completely avoid additional symbols that remain after halting a computation.
Hence, although the results presented in this paper are optimal with respect to
the number of membranes and the size of the rules used in the communicative
P systems we considered, there still remain some challenging open problems for
future research.
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13. Gh. Păun: Computing with membranes. Journal of Computer and Systems Science,
61 (2000), 108–143.
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