
Computing by Observing Bio-Systems:

the Case of Sticker Systems

Artiom ALHAZOV1,2, Matteo CAVALIERE1

1 Research Group on Mathematical Linguistics
Rovira i Virgili University

Pl. Imperial Tárraco 1, 43005 Tarragona, Spain
E-mail: {artiome.alhazov,matteo.cavaliere}@estudiants.urv.es

2 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova

E-mail: artiom@math.md

Abstract

A very common approach in chemistry and biology is to observe the progress of an
experiment, and take the result of this observation as the final output. Inspired by this, a
new approach to computing, called system/observer, was introduced in [2].

In this paper we apply this strategy to sticker systems, [7, 9]. In particular we use finite
automata (playing the role of observer) watching the “evolution” of a sticker system and
translating such “evolution” into a readable output.

We show that this way of “computing by observing” brings us results quite different
from the ones obtained when considering sticker systems in the standard manner. Even
regular simple sticker systems (whose generative power is subregular) become universal when
considered in this new framework. The significance of these results for DNA computing (by
sticker systems) is briefly discussed.

1 Introduction: Observing Sticker Systems

A usual procedure in chemistry and biology is to observe the progress of an experiment, and
then take the result of this observation as the final output. Inspired by this a new approach to
computing, called system/observer, has been introduced in [2].

There it was shown how a computing device can be constructed using two less powerful
systems: the first one, which is a mathematical model of a biological system, “lives” (evolves),
passing from one configuration to the next, producing in this way a “behavior”; the second
system, called “observer”, is placed outside and watches the biological system. Following a set
of specific rules the observer translates the behavior of the underlying system into a “readable”
output: it associates a label to each configuration of the bio-system and writes these labels
according to their chronological order onto an output tape; in this way the pair composed by
the biological system and the observer can be considered a computing (generating) device, as
described in Figure 1.

This idea recalls a discussion by G. Rozenberg and A. Salomaa in [10]. They remarked that
the result of a computation can be seen as already present in nature: we only need to look (in
an appropriate way) at it. In their case this observation is made applying a (generalized) finite

1

state sequential transducer to the so-called twin-shuffle language, a language closely related to
the structure of DNA molecules. In our case the observer is applied not only to the final result,
but to the entire evolution of the system. In other words, in our architecture, the computation
is made by observing the full “life” of a biological system.

Until now, the system/observer architecture has been applied in different frameworks; in the
first work, [2], the evolution of a membrane system (a formal model inspired by the functioning
of the living cells) has been observed. In that paper it has been shown how the system composed
of a “not powerful” membrane-system (with context-free power) and a finite state automaton
in the role of observer, is universal. This can be considered the first (surprising) “hint” of the
fact that computing by observing is a very powerful approach.

�
�

�
�Output � Computing

Device

�
�

@
@

Sticker

System

?Observation

Observer

Figure 1: Conceptual view of a sticker-system/observer architecture

In [4], a finite automaton observes the evolution of “marked” strings of a splicing system
(a formal system inspired by the recombination of DNA strands that happens under the action
of restriction enzymes). Also in this case, the observation adds much power to the considered
bio-system. In particular, it has been shown that just observing the evolution of marked strings
in a splicing system (using finite axioms and rules) it is even possible to obtain non-recursive
languages (we recall that the generative power of this class of splicing systems, considered in
the standard way, is subregular).

Finally, a more general application of the system/observer framework has been presented in
[3]: the “evolution” of a grammar has been observed using a finite automaton. In this case, the
universality is obtained using a finite state automaton observing a context-free grammar.

Here, we investigate observable sticker-systems, where the bio-system is a sticker system.
Sticker systems were introduced in [7] as a formal model of the operation of annealing (and

ligation) operation that is largely used in DNA computing area, since the successful experiment
of L.M. Adleman in 1994, [1]. The basic operation of a sticker system is the sticking operation
that constructs double stranded sequences out of “DNA dominoes” (polyominoes) that are
sequences with one or two sticky ends, or single stranded sequences, attaching to each other by
ligation and annealing.

The informal idea of an observable sticker system can be expressed in the following way: an
observer (for example, a microscope) is placed outside the “test tube”, where (an unbounded
number of copies of) DNA strands and DNA dominoes are placed together. Some of these
molecules are marked (for example, with a fluorescent particle). The molecules in the solution
will start to self-assemble (to stick to each other) and, in this way, new molecules are obtained.
The observer watches the evolution of the marked molecules and stores such evolution on an
external tape in a chronological order.

For each possible “evolution” of the marked molecules a certain string is obtained. Collecting
all the possible “evolutions” of such marked strands we obtain a language.

Many different variants of sticker systems can be considered, using different kinds of domi-
noes and different restrictions on the sticking operation (see details in [9]). In this paper we
consider a very restricted and simple variant of sticker system, whose power is subregular, and
we show that, when we consider such variant in the system/observer framework, then we get
much more generative power and even universality.

2

2 Preliminaries: Sticker Systems

In this section we recall the basic notions of sticker systems. As it was already mentioned
in the introduction, sticker systems can be considered a formal (language) model inspired by
the annealing and ligation operations. The basic idea is to have initially DNA strands, called
axioms, and dominoes that are DNA strands with sticky ends. Starting from the axioms and
iteratively using the operation of sticking, complete double stranded sequences are obtained.

The collection of all the complete double stranded sequences obtained is the language gen-
erated by the sticker system. In what follows we suppose the reader familiar with basic notions
of formal languages (as introduced, for instance, in [11]).

Consider an alphabet V and a symmetric relation ρ ⊆ V × V over V (of complementarity).
Following [9], we associate with V the monoid V ∗×V ∗ of pairs of strings. Because it is intended

to represent DNA molecules, we also write elements (x1, x2) ∈ V ∗ × V ∗ in the form

(
x1

x2

)
and

V ∗ × V ∗ as

(
V ∗

V ∗

)
. We denote by

[
V
V

]

ρ

= {

[
a
b

]
| a, b ∈ V, (a, b) ∈ ρ} the set of complete double

symbols, and WKρ(V) =

[
V
V

]∗

ρ

is the set of the complete double-stranded sequences (complete

molecules) also written as

[
x1

x2

]
, where x1 is the upper strand and x2 is the lower strand.

As in [9], we use single strands, which are the elements of S(V) =

(
λ
V ∗

)
∪

(
V ∗

λ

)
and

the molecules with (a possible) overhang on the right, which are the elements of Rρ(V) =[
V
V

]∗

ρ

S(V), from now on called well-started molecules (upper and lower strand are defined as

in the case of complete molecules).

u v

u
v

u
v

u v

u
v

u v

Figure 2: Sticking operation

Given a well started molecule x ∈ Rρ(V) and a single strand y ∈ S(V), we recall in Figure
2 the partial operation µ : Rρ(V) × S(V) −→ Rρ(V) of sticking, as defined in [9]. We point
out that we use a case of sticking, restricted to pasting a single strand to the right side of
a well-started molecule (with a possible overhang on the right), corresponding to the simple
regular sticker systems. Furthermore, we define length of a single strand

u =

(
x
λ

)
(or u′ =

(
λ
x

)
) as |u| = |u′| = |x|, and for a finite H ⊆ S(V) we say length(H) =

max{|u| | u ∈ H}.
A (simple regular) sticker system is a construct γ = (V, ρ, A, D), where A ⊆ Rρ(V) is the

(finite) set of axioms, and D ⊆ S(V) is the (finite) set of dominoes. Given u, v ∈ Rρ(V), we
write u ⇒ w iff w = µ(u, v) for some v ∈ D. A sequence (wi)1≤i≤k ⊆ Rρ(V) is called a complete
computation if w1 ∈ A, wi ⇒ wi+1 for 1 ≤ i < k and wk ∈ WKρ(V).

The language generated by a sticker system γ is the set of upper strands of all complete
molecules derived from the axioms. We remark the fact that the family of languages generated
by simple regular sticker systems is strictly included in the family of regular languages (for the
proof of this result the reader can consult [9]).

3

3 The Observer: Automata with Singular Output

For the observer (the “microscope”) as described in the introduction we need a device mapping
DNA molecules (also incomplete) into just one symbol.

Considering an alphabet V , our double-symbol alphabet constructed over V is

Vd =

[
V
V

]

ρ

∪

(
V
λ

)
∪

(
λ
V

)
.

Therefore, following the idea also used in [2], we define a variant of finite state automata: the
states are labeled by the symbols of the output alphabet Σ or with λ. Any computation of
the automaton produces as output the label of the state it halts in (we are not interested in
accepting computations and therefore do not consider the final states); because the observation
of a certain string should always lead to a fixed result, we consider here only deterministic and
complete automata.

An automaton with a singular output reads a molecule (the elements in Rρ(V)) and outputs
a singular symbol. Every well-started molecule in Rρ(V) ⊆ V ∗

d is read, in a classical way, from
left to right, scanning one double symbol from Vd at a time.

Formally, an automaton with singular output is a tuple O = (Z, Vd, Σ, z0, δ, σ) with a state
set Z, input alphabet Vd, initial state z0 ∈ Z, and a complete transition function δ as known
from conventional finite automata , that maps elements of (Vd ×Z) into Z. Furthermore, there
is the output alphabet Σ and a labeling function σ : Z −→ Σ ∪ {λ}.

For a molecule w ∈ Rρ(V) and an automaton O we write O(w) to indicate such output; for
a sequence w1, . . . , wn of n ≥ 1 of molecules in Rρ(V) we write O(w1, . . . , wn) for the string
O(w1) · · ·O(wn). For simplicity, in what follows, we present only the mapping defined by the
observer without giving its real implementation as a finite automaton.

Moreover, we will also want the observer to be able to reject some words. To do this we
simply choose a special symbol ⊥ 6∈ Σ and an extended output alphabet Σ⊥ = Σ∪ {⊥}; σ then
is a mapping from the set of states Z to Σ⊥ ∪ {λ}. If a bad molecule is observed, then ⊥ is
produced and thus the entire sequence is to be rejected. Then, using the intersection with the
set Σ∗, it is possible to filter out the strings which contain the special symbol ⊥.

4 Observable Sticker Systems

An observable sticker system with output alphabet Σ is a construct φ = (γ, O), where γ is the
sticker system with alphabet V , and O is the observer with input alphabet Vd constructed over
V and with output alphabet Σ.

We denote the collection of all complete computations of φ by C(φ). The language, over the
output alphabet Σ, generated by an observable sticker system φ, is defined as L(φ) = {O(s) |
s ∈ C(φ)}. If we want to filter out the words that contain the special symbol ⊥, then we consider
the language L̂(φ) = L(φ) ∩ Σ∗.

Here is a simple example that illustrates how an observable sticker system works. At the
same time this example shows how one can construct an observable sticker system generating
a non regular language (despite the fact that the power of simple regular sticker systems, when
considered in the classical way, is subregular).

Consider the following observable sticker system φ = (γ, O):

γ = (V = {a, c,g, t}, ρ = {(a, t), (c,g), (t, a), (g, c)}, A = {

[
a
t

]
}, D),

D = {

(
a
λ

)
,

(
λ
t

)
,

(
c

λ

)
,

(
λ
g

)
},

with the observer O defined by the following mapping:

4

O(w) =

b, if w ∈

[
a
t

]∗ (
a∗

λ

)
∪

(
λ
t∗

)
,

d, if w ∈

[
a
t

]∗ (
a∗c
λ

)
∪

(
λ

t∗g

)
,

λ, otherwise.

The language generated by γ is L1 = {bmdn | m ≥ n, m ≥ 1, n ≥ 0} /∈ REG.
Below is an example of computation of φ (generating bbbbdd):

Step 0 1 2 3 4 5 6

Added

(
a
λ

) (
a
λ

) (
λ
t

) (
c

λ

) (
λ
t

) (
λ
g

)

Molecule a aa aaa aaa aaac aaac aaac
t t t t t t t t t t t t tg

Output b b b b d d λ

The idea of the system φ is the following: think of symbols c, g as “markers”. While we stick

to the current molecule either

(
a
λ

)
or

(
λ
t

)
, the observer maps the result (a molecule without

markers) to b. As soon as we attach to the current molecule a marker, the observer maps the
resulting molecule to d, until the strand with a marker is extended or until the molecule is
completed.

Suppose that, when the first marker is attached, the length of the strand with that marker
is l1, the length of the other strand is l2 (clearly, l1 > l2), and then the output produced so far
is bl1+l2−2d. To complete the molecule by extending the strand without the marker, we need
to attach l1 − l2 symbols to it, and in this case the observer outputs dl1−l2−1 · λ. Thus, the
resulting string x consists of l1 + l2 − 2 b’s and l1 − l2 d’s. Since l2 ≥ 1, the difference between
the number of b’s and the number of d’s is l1 + l2 − 2 − (l1 − l2) = 2l2 − 2 ≥ 0. (Recall that
in case we attach a symbol to a string with the marker, the observer only outputs λ, so the
inequality m = |x|b ≥ |x|d = n remains valid, and all the combinations (m, n), m ≥ n are
possible). Hence, L(γ) = L1.

5 Small Observable Sticker Systems

The previous example is a preliminary “hint” on how, observing a sticker system, we can get
more power with respect to the case when sticker systems are considered in the classical way.

The idea of the previous example can be extended and it is possible to show that there exist
observable (simple regular) sticker systems, generating non-context-free languages, even using
dominoes of length 1. In other words, the “simple” observation of the evolution of the sticker
system permit us to “jump” from a subclass of regular language to non-context-free languages.

Theorem 5.1 There exists an observable sticker system φ = (γ, O), γ = (V, ρ, A, D),
length(D) = 1 such that L(φ) /∈ CF .

Proof. Consider the following observable sticker system φ = (γ, O):

γ = (V = {a, b, c}, ρ = {(a, a), (b, b), (c, c)}, A = {

[
c
c

]
}, D),

D = {

(
a
λ

)
,

(
λ
a

)
,

(
b
λ

)
,

(
λ
b

)
,

(
c

λ

)
,

(
λ
c

)
}, U = {a, b}

with the observer O defined by the following mapping,

5

H1 =

[
c
c

](
U∗a
λ

)
, H2 =

[
c
c

](
U∗b
λ

)
, H3 =

[
c
c

] (
U∗c

λ

)
,

H4 =

[
cU∗a
cU∗a

] (
U∗c

λ

)
, H5 =

[
cU∗b
cU∗b

] (
U∗c

λ

)
, H6 =

[
cU∗c

cU∗c

]

O(w) = a if w ∈ H1 ∪ H4, O(w) = b if w ∈ H2 ∪ H5, O(w) = c if w ∈ H3 ∪ H6,
O(w) = λ, otherwise.

The language generated by γ is L2 =
⋃

x∈U∗

(
xc · Pref(xc) ∪ Pref(x) · Sub(xc)

)
. Notice that

L2 ∩ U∗c U∗c = {xcxc | x ∈ U∗} /∈ CF , and hence L2 /∈ CF .

The computation of the system starts from the axiom

[
c
c

]
(at this point we can consider

both strands “empty”), and pieces (“symbols”) from D can be adjoined to the stands of the
axiom during the computation. When a complete molecule is obtained, the computation stops.
To understand the explanation, think of c as a marker.

While the marker is not added to the upper strand and the lower strand is “empty” (for
molecules of the form H1 or H2), the observer outputs, one by one, the symbols added to the
upper strand. After some symbol is added to the lower strand, the symbols added to the upper
strand are not output anymore (i.e., the observer outputs λ).

As soon as the system adds c to the upper strand (for the molecules of the form H4 or H5),
the observer starts to output the symbols that are adjoined to the lower strand.

If, at some step, a symbol is added to the upper (or lower) strand to the right of the marker
c, then, starting from such step, the observer will not produce any input anymore.

We can distinguish three main cases in the way the system φ works. We can get the string
s = xcxc by first adding the symbols of xc to the upper strand until the marker c is adjoined
(letting the observer to output xc, symbol by symbol), and then adding the symbols of xc to
the lower strand (letting the observer to output xc again). The observer cannot guarantee that,
first the upper strand is completed, and then the lower strand is completed. Therefore, strings
different from xcxc can also be generated.

The system φ can produce strings in the set xc · Pref(xc) in the following case: suppose
the upper strand is completed (obtaining cxc) and the lower strand is being completed; before
it finishes, a symbol might be added to the upper strand, at the right of the marker c. Starting
from this step the observer will output λ until the computation halts.

On the other hand, the system φ can also generate strings in the set Pref(x) ·Sub(xc). The
symbols corresponding to a prefix of x are added to the upper strand (the observer produces
Pref(x) as output of this phase). At some step, some symbols (i.e., a prefix of xc) are added to
the lower strand, and during this phase the observer outputs λ. At some time the upper strand
is completed and c is added (during this phase no output is produced because the lower strand
is not empty).

Starting from a certain step, new symbols are added to the lower strand, obtaining cxc.
Because, during this phase, a symbol might be added at any step to the right of the marker
in the upper strand (thus stopping the output), the string produced during this phase is in
Sub(xc). Hence, the full output is in the set Pref(x) · Sub(xc).

Therefore, we have shown that the language generated by φ is exactly L2. 2

6 Using an Observer with Rejection: Universality

After Theorem 6.1 it is natural to ask which is the class of sticker systems that is universal when
observed by a finite state automaton. Somehow expected, from Theorem 6.1 to get universality
we do not need “complicated” sticker systems but simple regular sticker systems with dominoes

6

of length at most 4 suffice. On the other hand we need to use an observer that is able to discard
any “bad” evolution, as the one described in Section 3.

Theorem 6.1 For each L ∈ RE there exists an observable sticker system φ = (γ, O), γ =
(V, ρ, A, D), with length(D) ≤ 4 such that L̂(φ) = L (See appendix for the proof.)

Using theorem 6.1, the definition of L̂(φ) and the fact that recursive languages are closed
under intersection with regular languages, we get:

Corollary 6.1.a There exists an observable sticker system φ = (γ, O), γ = (V, ρ, A, D), with
length(D) ≤ 4 such that L(φ) is a non-recursive language.

In other words, also if we do not discard any evolution of the observed sticker system then
we still get something not recursive; that is really surprising because intuitively the observer’s
ability to reject bad evolution could seem a powerful and essential feature to get something not
“trivial”.

7 Concluding Remarks and Research Proposals

In this paper we have presented a new way to look at the generation of languages in the
framework of sticker systems. We have applied the system/observer architecture, introduced in
[2], to the sticker systems and, in particular, we have introduced the class of observable sticker
systems.

In an observable sticker system we have a simple regular sticker system and an observer
(that is a finite state automaton with singular output) that watches the “evolution” of the
molecule, producing as output a label at each step of the computation. We have shown that
the combination of a sticker system with an observer can be very powerful even using simple
components; in fact, “observing” a simple regular sticker system with elementary (i.e., of length
1) dominoes it is possible to obtain even some non context-free languages (the family of lan-
guages generated, in the standard way, by such kind of sticker systems is subregular). If we use
a more “clever” observer, able to reject “bad” computations, then we get the universality just
using simple regular sticker systems with dominoes of length 4.

Such results have a clear significance for DNA computing. Sticker systems are theoretical
models of the annealing operation essentially used in many DNA computing experiments, start-
ing with the pioneering one of Adleman. Simple regular simple systems - hence of the same kind
as those corresponding to the annealing operation from Adleman experiment - generate only
regular languages. Observing their evolution by other finite state devices leads, surprisingly,
to universality. Informally speaking, “simple” experiments, observed in a clever manner by
“simple” tools can thus compute whatever much more complex processes can compute.

Many problems have been left open: we have considered a very restricted (and then interest-
ing) kind of observable sticker systems, where the underlying sticker system uses only dominoes
of length 1: we do not know what is the lower bound on the generative capacity of such class.
Can we get all the regular languages? We conjecture that the answer to question is yes. Can
every context-free language can be generated?

Due to Corollary 6.1.a, we know that, also without rejecting any computation, just observing
simple sticker systems with dominoes of length 4, it is possible to get non-recursive languages.
Is it possible to get every RE language? A positive answer to this question would be quite
surprising. Moreover, can the length of the dominoes used in Theorem 6.1 be decreased? (and
then, what is the minimal length to get universality?)

These research suggestions that we have shortly presented are only some of the ones that
the reader can “extract” from our paper; we believe that other interesting results can be found
in this direction of research.

7

Acknowledgements. The first author acknowledges IST-2001-32008 project “MolCoNet”
and also the Moldovan Research and Development Association (MRDA) and the U.S. Civil-
ian Research and Development Foundation (CRDF), Award No. MM2-3034 for providing a
challenging and fruitful framework for cooperation.

References

[1] L.M. Adleman, Molecular computation of solutions to combinatorial problems, Science,
226, 1994, 1021–1024.

[2] M. Cavaliere, P. Leupold, Evolution and Observation – a New Way to Look at Membrane
Systems. In: C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenber, A. Salomaa (eds.):
Membrane Computing, Lecture Notes in Computer Science 2933, Springer, 2004, 70–88.

[3] M. Cavaliere, P. Leupold, Evolution and Observation - A Non-Standard Way to Generate
Formal Languages, Theoretical Computer Science, accepted.

[4] M. Cavaliere, N. Jonoska, (Computing by) Observing Splicing Systems, submitted, 2004.

[5] J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory, Springer-Verlag,
Berlin, Heidelberg, 1989.

[6] R. Freund, Bidirectional Sticker Systems and Representations of RE Languages by Copy
Languages, In: Gh. Păun (ed.) Computing with Bio-Molecules: Theory and Experiments,
Springer-Verlag, Singapore, 1998, 182–199.

[7] L. Kari, Gh. Păun, G. Rozenberg, A. Salomaa, S. Yu, DNA computing, sticker systems,
and universality, Acta Informatica, 35, 5 (1998), 401–420.

[8] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Compu-
tation, Addison-Wesley, 1979.

[9] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing - New Computing Paradigms,
Springer-Verlag, Berlin, 1998.

[10] G. Rozenberg, A. Salomaa, Watson-Crick Complementarity, Universal Computations and
Genetic Engineering, Technical Report 96-28, Dept. of Computer Science, Leiden Univer-
sity, 1996.

[11] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

8 Appendix – On Universality

Theorem 6.1 (For each L ∈ RE there exists an observable sticker system φ = (γ, O), γ =
(V, ρ, A, D), length(D) ≤ 4 such that L̂(φ) = L)

Proof. (sketch) For a given language L ∈ RE there exists a (binary) conditional grammar
G = (N, T, P, S), generating L. We use the following notations: E, F, Z, M1, M2 are new
symbols, U = N ∪ T ∪ {E, F, Z, M1, M2}, U ′ = {X ′ | X ∈ U}, U ′′ = {X ′′ | X ∈ U}, U ′′

0 =
U ′′ − {M1, M2, E, F}, U1 = U ∪ U ′ − {M1, M2, M

′
1, M

′
2}, U2 = U ′′ ∪ Lab(P) − {M ′′

1 , M ′′
2 }. We

associate distinct labels to the productions in P , we write the set of all labels as Lab(P). For
every rule (r : B → x) we define

cod(r) =

Z ′, if x = λ,
C ′, if x = C ∈ (N ∪ T),
B′

1M
′
1M

′
2B

′
2, if x = B1B2 ∈ (N ∪ T)(N ∪ T).

8

We construct the following observable sticker system φ = (γ, O):

γ = (V = U ∪ U ′ ∪ U ′′ ∪ Lab(P), ρ, A = {

[
E
E′′

](
M1M2SM1M2E

λ

)
}, D),

ρ = {(X, X ′′), (X ′, X ′′), (X ′′, X), (X ′′, X ′) | X ∈ U}

∪ {(B, r), (r, B), (B′, r), (r′, B) | (r : B → x) ∈ P},

D = {

(
B
λ

)
,

(
B′

λ

)
,

(
λ

B′′

)
| B ∈ U} ∪ {

(
cod(r)

λ

)
,

(
λ
r

)
| r ∈ Lab(P)}.

We consider a morphism h : U ∪ U ′ → U defined for every x ∈ U as

h(x) = h(x′) =

{
λ, if x ∈ {M1, M2, Z},
x, otherwise.

To describe the observer, we define a set H of “molecule blocks” (representing the sentential
forms of G)

H = {

[
x1E
x2E

′′

]
| ∃(r : B → x, R) ∈ P : h(x1) ∈ R,

x2 ∈ (M ′′
1 M ′′

2 (Lab(P) ∪ U ′′
0))∗ ∩ U ′′∗rU ′′∗},

Finally, the mapping of observer O is given below.

O(w) =

λ, if w ∈

[
E
E′′

]
H∗

[
x1

x2

](
x3Ex4

λ

)
and

((Suff(Ex4), Suff(Ex1)) ∈ U1 × {M ′′
1 } ∪ {M1, M

′
1} × {M ′′

1 }
∪{M1, M

′
1} × {M ′′

2 } ∪ {M2, M
′
2} × {M ′′

2 } ∪ {M2, M
′
2} × U2

∪{(X, X ′′) | X ∈ U − {M1, M2}
∪{(cod(r), r) | (r : B → x, R) ∈ P}},

t(X), if w ∈

[
E
E′′

]
H∗

[
x1X
x2

] (
x3F
λ

)
and x1Xx2 ∈ (U ∪ U ′ − N)∗,

λ, if w ∈

[
E
E′′

]
H∗

[
(U ∪ U ′ − N)∗F

(U ′′)∗F ′′

]
,

⊥, otherwise,

where t : U ∪ U ′ −→ T is a morphism defined as t(X) = λ if X /∈ T ∪ T ′ and
t(X) = t(X ′) = X if x ∈ T .

We now proceed to the explanations of the construction above.
Simulating G. γ assembles the molecule representing the concatenation of sentential forms

of the derivation in G. Symbol by symbol, we copy the current sentential form, applying some
production once (copying or rewriting a symbol takes six steps). O checks the regular condition,
rejecting “incorrect” molecules.

Symbols used. In the concatenation of sentential forms, E represents the separator; F
marks the final one; Z represents erased symbols. M1 and M2 are the spacers, used to synchro-
nize the extension of the upper and lower strands. N and T are symbols of G.

The union of all the above is denoted by U . In the upper strand, the symbols in U are
the ones copied from the previous sentential form and the symbols in U ′ represent the result of
rewriting some non terminal symbols in the previous sentential form. In the lower strand, the
symbols determine the future behavior: those in U ′′ are to be copied, while the ones in Lab(P)
represent the production to be applied.

Regular condition. A sentential form x is represented on the upper strand by x (shuffled
with Z∗, with some symbols primed), where each symbol is preceded by the spacers M1 and
M2 (h is a morphism “recovering” x).

9

We call a “block” a double strand encoding a sentential form, as described above. By H we
denote the set of “good blocks”: the lower strand contains exactly one symbol from Lab(P) -
one rewriting rule is applied; the upper strand satisfies the regular condition, associated to this
rule.

The sticker system. Extending the upper strand corresponds to writing a new sentential
form, while extending the lower one corresponds to reading the current sentential form. The
overhang of the current molecule represents the unread part of the current sentential form
together with already produced part of the new one.

To the upper strand we can adjoin the symbols of U (if copied from the previous sentential
form), or codes of the right-hand sides of rules in G (defined by the function cod). To the lower
strand we add the symbols of U ′′ (for copying) or the labels of the rules (for applying them).

The observer checks a few conditions, rejecting the result of the computation (by writing
⊥) if they are not satisfied.

The “correct evolution” assumes that the lower strand is extended first, and a strand is
never extended twice in a row before F is placed. So, the observer requires that the spacers
(from S1 = {M1, M

′
1}, from S2 = {M2, M

′
2}) and non-spacers (from U1) alternate in the upper

strand (of the form E(S1S2U1)
∗({λ}∪S1 ∪S1S2)); M ′′

1 , M ′′
2 and those from U2, respectively, in

the lower strand. If the synchronization fails, then the last symbols of the strands will either
be in S1 × U2, or in S2 × {M ′′

1 }, or in U1 × {M ′′
2 }, and the result is rejected.

After we “read” a symbol, we either copy it, or rewrite it by some production in G. The
observer checks that what we write in the upper strand corresponds to what we read in the
lower strand.

It is also the duty of the observer to check the correctness of the blocks: for each non-final
sentential form x exactly one rule of G is applied, and that x respects the regular condition,
associated to this rule.

When we arrive to the terminal sentential form, F is added to the upper strand. Starting
from this step, only the lower strand is extended, and the observer outputs the result by applying
the morphism t to the symbols being complemented. 2

The following example shows the technique used in the previous theorem. Example. Con-
sider a conditional grammar G = ({S}, {a}, {(r1 : S → aS, Sa∗), (r2 : S → λ, a∗S)}, S), we
illustrate the simulation of the derivation S → aS → a. The observer outputs the symbol a in
step 33, and λ in other cases, halting at step 39.

Step 0 |2 |4 6 |8 |10 |12 |

Upper |E M1 M2 S M1 M2 E |M1 |M2 |a′ M′
1

M′
2

S′ |M1 |M2 |E |
Lower |E′′ |M ′′

1 |M ′′
2 |r1 |M

′′
1 |M ′′

2 |E′′ |M ′′
1 |M ′′

2 |a′′ |M ′′
1 |M ′′

2 |r2 |M ′′
1 |M ′′

2 |E′′ |

Step |0 |1 |3 |5 |7 |9 |11 |13 |15 |17 |19 |21 |23 |25 |27 |29 |

Step |14 |16 |18 |20 |22 |24 |26 |28 |30 |

Upper |M1 |M2 |a |M1 |M2 |Z′ |M1 |M2 |F |

Lower |M ′′
1 |M ′′

2 |a′′ |M ′′
1 |M ′′

2 |Z ′′ |M ′′
1 |M ′′

2 |F ′′ |

Step |31 |32 |33 |34 |35 |36 |37 |38 |39 |

10

